Concatenation of Short Constraint Length Convolutional Codes
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Several methods of decoding a concatenated pair of K = 6, V = 2 convolutional
codes are investigated. It was found that none of the methods provides performance
which is suitable for space channel application.

l. Convolutional Codes

An encoder for a convolutional code consists of a K-bit
shift register and V multi-input binary adders, each with
some combination of the bits of the shift register as inputs.
As each input bit is shifted into the register, the V outputs
from the adders are transmitted. The rate of such a code
is 1/V, and K is called its constraint length. Such a code
will be referred to as a K by V code. The code may be
described by specifying its V by K tap matrix A = (a;;)
where a;; = 1if the jth bit of the shift register is connected
to the ith binary adder a;; = 0 otherwise. If the input to
the encoder is * -+, ¢y, pria, Prsz, - - - the output will be
T, (bm, bt,z, e ,bt,V>, (bt+1,1, bt+1,2, T, bt+1,V),

- where (bs, * * *, bw) = Aty pt-1, " * » Pt-ks1)t
The tap matrix is often abbreviated by representing its
columns in hexadecimal notation if V = 4. This is accom-
plished for the jth column by representing av ; + 2ay.,,; +

-+ + 4 2V g, ; as a hexadecimal digit 0, 1, - - -, F
(Fig. 1). The signal transmitted is usually ¢ = - - - , (¢, 1,
©,Ctv), -+ where ¢;; = (—1)%. Thus we transmit
=+1 instead of 0,1. Notice in Fig. 1 how the response of
the encoder to an impulse input is the columns of the tap
matrix.

Il. Viterbi Decoding

In the Viterbi algorithm for decoding a convolutional
code, one views the encoder as a finite state machine with
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281 possible states corresponding to the contents of the
first K — 1 bits of the shift register (Ref. 1). As each new
bit is shifted in, the encoder generates V output bits and
changes states. The encoder 313 pictured in Fig. 1 has the
four states 00, 01, 10, and 11. If it is in state 10 and receives
a 0 as the next input, it outputs 1, 0 and changes to state

01. If the messagey = * - * ,¥i, Yis1, - ° ° is encoded into
x= - (%, *** ,%iy), - - - and the channel error is
e= - (e, " " ,ey), -+ - then the received signal

will be r = x + e. The decoder wishes to find y given r. To
do this, he must find the message ® which encodes into
the signal ¢ = ¢(®) such that e = e (®) =r — ¢ is mini-
mized. We minimize e by minimizing the sum
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where €ij = Ty — Cij and éij =1y —
This sum reduces to

(—eij) = 1i; + cij.
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If we define the metric of ® at time ¢

t |4
M@= 3 3y

t=-00 j=1

then our task is to maximize M (®, ).
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A 3 by 2 convolutional code

For each message ®, we also know S (®,1) the state in
which the encoder will be at step t. For any states, let the
survivor @ (s,t) = * * * ¢, ¢¢ be the message ® up to
step t which maximizes M (®,t) given S (?,¢) = 5. Let
m (s, t) be its metric. If we know for each states, ® (s, — 1)
and m (s,t — 1), we can find @ (s, ) and m (s, t) as follows:
Each state s can only result from one of two previous states
8, and s,. That is, the state 01 can result from 10 or 11, If
we know the present state and the previous state, then we
know the contents of the shift register and, hence, the
output for the step.

Knowing the step output gives us the change in metric
m, or m;. We compare m, + m (s,,t — 1} and m; +
m (s;,t — 1) and the larger is m (s, t). Its corresponding
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survivor ® becomes & (s, t), the new survivor for s with a
1 or 0 appended, depending on whether s begins with
a 1 or 0. These survivors tend to converge after 4 or 5
constraint lengths (Ref. 2, pp. 61-64) so that if & (s,t) =
“o i1, b and @ (s, 1) = -+, $ho, ¢F then ¢y usually
equals ¢} Thus the survivors need only be saved to a
finite depth.

The storage needed is proportional to K« 251, Although
long constraint length codes perform better, they require
so much storage and time or circuitry to decode that they
are impractical.

One method of improving performance is careful eval-
uation of the received signal. If the received signal is
hard-limited (resolved into +1 or —1) performance is
2 dB worse than if it is resolved to 4-bit accuracy —%s,
—3, - - -, 136, %6 (Fig. 2).
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Fig. 2. Performance of 6 by 2 codes
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lll. Concatenation

Another possible method of improving performance
without increasing complexity and storage requirements
is to concatenate codes. In encoding, concatenation is
accomplished by using the output from one encoder as
input to a second encoder (Fig. 3). One way to find the
characteristics of the concatenated code is to find its

response to an impulse input, - - ©,0,0,0,1,0,0,- - -. If
the first encoder is a K; by V; code with tap matrix
T = (t;;), the output from it will be - - -, (0, - - - ,0),
(tlh ta1, © " " ,tvl), cee (thl’ e ’tV1K1)’ (0, e ’0)’ e

The output of the-pair will be the response of the second
encoder to this input. If the second code is K, by V,, for
each of the t;;’s it will have V, outputs. Thus for each
input bit, the pair will have V, « V, outputs. The effect of
the impulse will be felt by the pair until it has passed
through the first encoder K, steps, and ty x, has passed
through the second encoder another (K, — 1)/V, steps.
Rounded up, this gives a K; + [(K; — 2)/V,] + 1 by V,V,
code. ([«x] is the greatest integer = x.) Thus two 6 by 2
codes can be concatenated to give a 9 by 4 code. If this
code could be decoded by two 6 by 2 decoders then the
memory requirement would be cut by a factor of more
than 4.

Two questions arise:

(1) What form of output from the first decoder is best
to use as input to the second decoder?

(2) Can concatenated decoding perform as well as or
better than a single decoder of similar complexity?

To pursue these questions, a pair of 6 by 2 Viterbi
decoders were simulated on an XDS 930 computer. The
program used is an extension of the one described by
J. Layland in Ref. 2, pp. 64-66.

IV. Methods of Linking

Figure 4 contains a block diagram for the three methods
of linking described here: direct, differential, and demo-
cratic linkage.

Output from the inner decoder, which corresponds to
the second encoder, is usually taken to be the oldest bit
of the survivor of the most likely state (the s with m (s, t)
largest). If this output is ¢; (0 or 1), we can use (—1)%* as
input to the outer decoder. We will call this direct linkage.
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CONCATENATION OF TWO 3 BY 3 ENCODERS
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Fig. 3. Concatenation of two 3 by 2 encoders

Direct linkage has the disadvantage of providing only
hard-limited inputs to the outer decoder which carry no
judgments of confidence from the inner decoder. Just as
4-bit quantization improved the performance of a single
decoder, we would hope that weighting the inner de-
coder’s decisions would improve performance of the pair.

If the output from the inner decoder is ® we can calcu-
late the metric of @,

t v
M@= 3 3 rijci

i=—00 j=1

We can also calculate the metric of @, the sequence dif-
fering from ® in the {th place. Then M (®, ) — M (¢, 0 )
is a measure of the confidence in the {th bit of ®. When
(—1)#[M (®,00) — M (9, 0)] is used as input to the sec-
ond decoder, this is called differential linkage. Note that
if ¢ is the signal resulting from message ® and ¢' is the
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signal generated by @', then ¢ and ¢’ differ in only K;*V,
places at most. Thus

1+Ks Vo
M(@®,0) - M@, 0)= 3 3 rjci; —cij)

i=1 j=1

1+K; V. '
= 13i5¢i5 (1 — €5 ¢ly)
i=1 1

&l

.

1+
= rijc”Zti‘ i1
i=1 1

&
N

.
]

where T = (t;;) is the tap matrix of the outer code.

In the implementation described by the block diagram
in Fig. 4, the received signal r is saved in a shift register.
The hard output @ from the inner decoder is encoded by
a copy of the second encoder (marked ENC 2) and the
resulting ¢ is multiplied by r with the appropriate align-
ment so that the products r;;c;; are formed. The linear
combination of these corresponding to the tap matrix is
then used as a weight for the hard output.

DECODER CONCATENATION

AL
MESSAGE ENC 1 ENC 2 SIGN
FIRST SECOND
ENCODER ENCODER

ERROR + DCD2 | DCDI1 ®DECODED

MESSAGE

INNER OUTER
DECODER DECODER

LINKAGE SCHEMES

T S

w |

ENC 2 + Z
[} TAPS

CORRESPONDING

l TOt.,. =1
ii

DIFFERENTIAL

i

‘= DIRECT

DEMOCRATIC

Fig. 4. Decoder concatenation and linkage schemes
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Fig. 5. Performance of democratic linkage versus depth

Another method of linkage is to let the bits of the sur-
vivors of all the states vote. Let S;(s) be the dth bit of the
survivor of state s of the first decoder. When second de-
coder input is

S (~ 1)

8

this is called democratic linkage at depth d. When the
depth is too great, the survivors have converged and this
is no different from using direct linkage. When d is too
small, the probability of error is large. Thus, there is an
optimal depth which may vary with the signal-to-noise
ratio (Fig. 5).

Democratic linkage at this depth performs better than
differential or direct linkage (Fig. 6).

V. Simulation Results

Results indicate that a pair of 6 by 2 decoders could
not compete with a single 7 by 3 decoder except at very
high signal-to-noise ratios which are not encountered in
the planetary program. In fact, for the three methods of
linkage tried, the pair did not perform as well as a sin-
gle 6 by 2 decoder at the same bit signal-to-noise ratio.
When the pair is working at noise ratios of interest e.g.,
ST,/N, = 3 dB, the first decoder is operating at half this
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Fig. 6. Performance of concatenated code

power or 0 dB. At this power, it does not perform well
enough to regain the lost 3 dB. Two 6 X 2 codes were
studied. One (313123) performs better at higher signal-to-
noise ratios, while the other (302003) performs better at
low signal-to-noise ratios (Fig. 2). When the concatenated
pair is operating at 3.6 to 4.4 dB, the inner decoder runs
at 0.6 to 1.4 dB. In this range, it would appear that the
sparse code (302003) would work better for the inner de-
coder. This was borne out by simulation. Although the
full code (313123) performed better as the outer code in
this range, the sparse code was used for both the inner
and outer codes in most of the statistics gathered. Per-
formance of this concatenated code is compared with the
single 6 by 2 decoder and a 7 by 3 decoder in Fig. 6.
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The codes used in this simulation were found by a hill
climbing algorithm described by J. Layland (Ref. 3). This
algorithm uses an approximation of the probability of
error of the code P.* Let I; represent the bit sequence
that is the binary expansion of the integer i, C«I; repre-
sent the coder output sequence corresponding to input I;,
and Wy, (x) be the Hamming weight of the sequence x.
Then for a K by V code operating at a signal-to-noise ratio
of E;/N, define

’h — \%% , USSR L Db L
P; E H(I,)exp( V-N, )
i odd

The algorithm starts with a given code, calculates its P
and compares this with P.* for all codes derived by modi-
fying one bit. If P;* is smaller than for all other codes in
this Hamming 1-sphere, it is considered a good code.
If not, the code in the sphere with smallest P is chosen
and the process is repeated. The full code (313123) was
the best 6 by 2 code found. The sparse code was found by
using the algorithm to search for the best pair of con-
catenated 6 by 2 codes. It happened that both codes of
the pair were the same (302003). The concatenated pair
results in a 9 by 4 code (FAF43FA3C). P;* for this code
lay between that for the best 9 by 4 code and the best
8 by 4 code. The performance of this code is shown in
Fig. 6.

VI. Conclusion

Concatenation of Viterbi decoders does not appear to
be useful in the present context of the planetary program.
At higher signal-to-noise ratios, however, this technique
might be used to produce the same performance with
a small reduction in decoder complexity.

The performance difference between the best linkage
scheme and direct connection is only about 0.4 dB, instead
of the 2 dB that could exist if the transferred symbols
were gaussian and independent. Consequently, it is con-
jectured that the most appropriate outer code, in any
concatenation scheme involving a Viterbi algorithm inner
decoder, is a high-rate algebraic block code.
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